Crystal system
In crystallography, the terms crystal system, crystal family, and lattice system each refer to one of several classes of space groups, lattices, point groups, or crystals. Informally, two crystals tend to be in the same crystal system if they have similar symmetries, though there are many exceptions to this.

Crystal systems, crystal families, and lattice systems are similar but slightly different, and there is widespread confusion between them: in particular the trigonal crystal system is often confused with the rhombohedral lattice system, and the term "crystal system" is sometimes used to mean "lattice system" or "crystal family".

Space groups and crystals are divided into 7 crystal systems according to their point groups, and into 7 lattice systems according to their Bravais lattices. Five of the crystal systems are essentially the same as five of the lattice systems, but the hexagonal and trigonal crystal systems differ from the hexagonal and rhombohedral lattice systems. The six crystal families are formed by combining the hexagonal and trigonal crystal systems into one hexagonal family, in order to eliminate this confusion.

Overview
A lattice system is a class of lattices with the same point group. In three dimensions there are seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic. The lattice system of a crystal or space group is determined by its lattice but not always by its point group.

A crystal system is a class of point groups. Two point groups are placed in the same crystal system if the sets of possible lattice systems of their space groups are the same. For many point groups there is only one possible lattice system, and in these cases the crystal system corresponds to a lattice system and is given the same name. However, for the five point groups in the trigonal crystal class there are two possible lattice systems for their point groups: rhombohedral or hexagonal. In three dimensions there are seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic. The crystal system of a crystal or space group is determined by its point group but not always by its lattice.

A crystal family also consists of point groups and is formed by combining crystal systems whenever two crystal systems have space groups with the same lattice. In three dimensions a crystal family is almost the same as a crystal system (or lattice system), except that the hexagonal and trigonal crystal systems are combined into one hexagonal family. In three dimensions there are six crystal families: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, and cubic. The crystal family of a crystal or space group is determined by either its point group or its lattice, and crystal families are the smallest collections of point groups with this property.

In dimensions less than three there is no essential difference between crystal systems, crystal families, and lattice systems. There are 1 in dimension 0, 1 in dimension 1, and 4 in dimension 2, called oblique, rectangular, square, and hexagonal.

The relation between three-dimensional crystal families, crystal systems, and lattice systems is shown in the following table 1:

Table 1: Three-dimensional crystal families, crystal systems, and lattice systems.

	Crystal family
	Crystal system
	Required symmetries of point group
	point groups
	space groups
	bravais lattices
	Lattice system

	Triclinic
	None
	2
	2
	1
	Triclinic

	Monoclinic
	1 twofold axis of rotation or 1 mirror plane
	3
	13
	2
	Monoclinic

	Orthorhombic
	3 twofold axes of rotation or 1 twofold axis of rotation and two mirror planes.
	3
	59
	4
	Orthorhombic

	Tetragonal
	1 fourfold axis of rotation
	7
	68
	2
	Tetragonal

	Hexagonal
	Trigonal
	1 threefold axis of rotation
	5
	7
	1
	Rhombohedral

	
	
	
	
	18
	1
	Hexagonal

	
	Hexagonal
	1 sixfold axis of rotation
	7
	27
	
	

	Cubic
	4 threefold axes of rotation
	5
	36
	3
	Cubic

	Total: 6
	7
	
	32
	230
	14
	7


Crystal systems

The crystal structures of biological molecules (such as protein structures) can only occur in the 11 enantiomorphic point groups, as biological molecules are invariably chiral. The protein assemblies themselves may have symmetries other than those given above, because they are not intrinsically restricted by the Crystallographic restriction theorem. For example the Rad52 DNA binding protein has an 11-fold rotational symmetry (in human), however, it must form crystals in one of the 11 enantiomorphic point groups given above.

Lattice systems
The distribution of the 14 Bravais lattice types into 7 lattice systems is given in the following tables 2 and 3:
Table 2: The distribution of the 14 Bravais lattice types into 7 lattice systems.

	The 7 lattice systems
	The 14 Bravais Lattices

	triclinic (parallelepiped)
	


	
	
	

	monoclinic (right prism with parallelogram base; here seen from above)
	simple
	base-centered
	
	

	
	


	


	
	

	orthorhombic (cuboid)
	simple
	base-centered
	body-centered
	face-centered

	
	


	


	


	



	tetragonal (square cuboid)
	simple
	body-centered
	
	

	
	


	


	
	

	rhombohedral
(trigonal trapezohedron)
	


	
	
	

	hexagonal (centered regular hexagon)
	


	
	
	

	cubic
(isometric; cube)
	simple
	body-centered
	face-centered
	

	
	


	


	


	



In geometry and crystallography, a Bravais lattice is a category of symmetry groups for translational symmetry in three directions, or correspondingly, a category of translation lattices.

Such symmetry groups consist of translations by vectors of the form
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where n1, n2, and n3 are integers and a1, a2, and a3 are three non-coplanar vectors, called primitive vectors.

These lattices are classified by space group of the translation lattice itself; there are 14 Bravais lattices in three dimensions; each can apply in one lattice system only. They represent the maximum symmetry a structure with the translational symmetry concerned can have.

All crystalline materials must, by definition fit in one of these arrangements (not including quasicrystals).

For convenience a Bravais lattice is depicted by a unit cell which is a factor 1, 2, 3 or 4 larger than the primitive cell. Depending on the symmetry of a crystal or other pattern, the fundamental domain is again smaller, up to a factor 48.

The Bravais lattices were studied by Moritz Ludwig Frankenheim (1801-1869), in 1842, who found that there were 15 Bravais lattices. This was corrected to 14 by A. Bravais in 1848.
Lattice systems

These lattice systems are a grouping of crystal structures according to the axial system used to describe their lattice. Each lattice system consists of a set of three axes in a particular geometrical arrangement. There are seven lattice systems. They are similar to but not quite the same as the seven crystal systems and the six crystal families.

Table 3: The distribution of the 14 Bravais lattice types into 7 lattice systems.

	The 7 lattice systems 
(From least to most symmetric)
	The 14 Bravais Lattices
	Examples

	1. triclinic
(none)
	

	
	
	
	K2S2O8

	2. monoclinic
(1 diad)
	simple
	base-centered
	
	
	

	
	

	

	
	
	As4S4, KNO2

	3. orthorhombic
(3 perpendicular diads)
	simple
	base-centered
	body-centered
	face-centered
	

	
	

	

	

	

	Ga, Fe3C

	4. rhombohedral
(1 triad)
	

	
	
	
	Hg, Sb

	5. tetragonal
(1 tetrad)
	simple
	body-centered
	
	
	

	
	

	

	
	
	In, TiO2

	6. hexagonal
(1 hexad)
	

	
	
	
	Zn, Co, NiAs

	7. cubic
(4 triads)
	simple (SC)
	body-centered (bcc)
	face-centered (fcc)
	
	

	
	

	

	

	
	Au, Si, NaCl


Tables 4 and 5 show diagrams of the 7 crystal systems.
Table 4: Crystal systems.
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Table 5: Crystal systems.
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The simplest and most symmetric, the cubic (or isometric) system, has the symmetry of a cube, that is, it exhibits four threefold rotational axes oriented at 109.5° (the tetrahedral angle) with respect to each other. These threefold axes lie along the body diagonals of the cube. The other six lattice systems, are hexagonal, tetragonal, rhombohedral (often confused with the trigonal crystal system), orthorhombic, monoclinic and triclinic.
 Table 6 shows Examples of elements and compounds that adopt each of the crystal systems.
Table 6: Examples of elements and compounds that adopt 
each of the crystal systems.
	Crystal system
	Example

	triclinic
	K2S2O8

	monoclinic
	As4S4, KNO2

	rhombohedral
	Hg, Sb

	hexagonal
	Zn, Co, NiAs

	orthorhombic
	Ga, Fe3C

	tetragonal
	In, TiO2

	cubic
	Au, Si, NaCl


The volume of the unit cell can be calculated by evaluating a · b × c where a, b, and c are the lattice vectors. The volumes of the Bravais lattices are given in the following table 7:
Table 7: The volume of the Bravais lattices.
	Lattice system
	Volume

	Triclinic
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	Monoclinic
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	Orthorhombic
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	Tetragonal
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	Rhombohedral
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	Hexagonal
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	Cubic
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Tables 8, 9 and 10 contains some crystallographic identification 1 of some crystal structures.
Table 8: Crystallographic identification 1 of some crystal structures.
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Table 9: Crystallographic identification 2 of some crystal structures.
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Table 10: Crystallographic identification 3 of some crystal structures.
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Bravais lattices

When the crystal systems are combined with the various possible lattice centerings, we arrive at the Bravais lattices. They describe the geometric arrangement of the lattice points, and thereby the translational symmetry of the crystal. In three dimensions, there are 14 unique Bravais lattices that are distinct from one another in the translational symmetry they contain. All crystalline materials recognized until now (not including quasicrystals) fit in one of these arrangements. The fourteen three-dimensional lattices, classified by crystal system, are shown above. The Bravais lattices are sometimes referred to as space lattices.

The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the 14 Bravais lattices. The characteristic rotation and mirror symmetries of the group of atoms, or unit cell, is described by its crystallographic point group.

Point groups

The crystallographic point group or crystal class is the mathematical group comprising the symmetry operations that leave at least one point unmoved and that leave the appearance of the crystal structure unchanged. These symmetry operations include

· Reflection, which reflects the structure across a reflection plane
· Rotation, which rotates the structure a specified portion of a circle about a rotation axis
· Inversion, which changes the sign of the coordinate of each point with respect to a center of symmetry or inversion point
· Improper rotation, which consists of a rotation about an axis followed by an inversion.

Rotation axes (proper and improper), reflection planes, and centers of symmetry are collectively called symmetry elements. There are 32 possible crystal classes. Each one can be classified into one of the seven crystal systems.

Space groups

The space group of the crystal structure is composed of the translational symmetry operations in addition to the operations of the point group. These include:

· Pure translations, which move a point along a vector

· Screw axes, which rotate a point around an axis while translating parallel to the axis

· Glide planes, which reflect a point through a plane while translating it parallel to the plane.

There are 230 distinct space groups.

Crystal Structure

Module by: Andrew R. Barron, Carissa Smith. E-mail the authors
Introduction

In any sort of discussion of crystalline materials, it is useful to begin with a discussion of crystallography: the study of the formation, structure, and properties of crystals. A crystal structure is defined as the particular repeating arrangement of atoms (molecules or ions) throughout a crystal. Structure refers to the internal arrangement of particles and not the external appearance of the crystal. However, these are not entirely independent since the external appearance of a crystal is often related to the internal arrangement. For example, crystals of cubic rock salt (NaCl) are physically cubic in appearance. Only a few of the possible crystal structures are of concern with respect to simple inorganic salts and these will be discussed in detail, however, it is important to understand the nomenclature of crystallography. 

Crystallography 

Bravais lattice 

The Bravais lattice is the basic building block from which all crystals can be constructed. The concept originated as a topological problem of finding the number of different ways to arrange points in space where each point would have an identical “atmosphere”. That is each point would be surrounded by an identical set of points as any other point, so that all points would be indistinguishable from each other. Mathematician Auguste Bravais discovered that there were 14 different collections of the groups of points, which are known as Bravais lattices. These lattices fall into seven different "crystal systems”, as differentiated by the relationship between the angles between sides of the “unit cell” and the distance between points in the unit cell. The unit cell is the smallest group of atoms, ions or molecules that, when repeated at regular intervals in three dimensions, will produce the lattice of a crystal system. The “lattice parameter” is the length between two points on the corners of a unit cell. Each of the various lattice parameters are designated by the letters a, b, and c. If two sides are equal, such as in a tetragonal lattice, then the lengths of the two lattice parameters are designated a and c, with b omitted. The angles are designated by the Greek letters α, β, and γ [image: image42.png]


, such that an angle with a specific Greek letter is not subtended by the axis with its Roman equivalent. For example, α is the included angle between the b and c axis. 

Table 11 shows the various crystal systems, while table 12 (Figure 1) shows the 14 Bravais lattices. It is important to distinguish the characteristics of each of the individual systems. An example of a material that takes on each of the Bravais lattices is shown in Table 6. 
Table 11: The various crystal systems.

	System
	Axial lengths and angles
	Unit cell geometry

	cubic
	a = b = c, α = β = γ [image: image43.png]


= 90°
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	tetragonal
	a = b ≠ c, α = β = γ [image: image45.png]


= 90°
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	orthorhombic
	a ≠ b ≠ c, α = β = γ [image: image47.png]


= 90°
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	rhombohedral
	a = b = c, α = β = γ [image: image49.png]


≠ 90°
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	hexagonal
	a = b ≠ c, α = β = 90°, γ [image: image51.png]


= 120°
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	monoclinic
	a ≠ b ≠ c, α = γ [image: image53.png]


= 90°, β ≠ 90°
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	triclinic
	a ≠ b ≠ c, α ≠ β ≠ γ [image: image55.png]
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Table 12: Geometrical characteristics of the seven crystal systems (Bravis lattice).
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The cubic lattice is the most symmetrical of the systems. All the angles are equal to 90°, and all the sides are of the same length (a = b = c). Only the length of one of the sides (a) is required to describe this system completely. In addition to simple cubic, the cubic lattice also includes body-centered cubic and face-centered cubic table 12 (Figure 1). Body-centered cubic results from the presence of an atom (or ion) in the center of a cube, in addition to the atoms (ions) positioned at the vertices of the cube. In a similar manner, a face-centered cubic requires, in addition to the atoms (ions) positioned at the vertices of the cube, the presence of atoms (ions) in the center of each of the cubes face. 

The tetragonal lattice has all of its angles equal to 90°, and has two out of the three sides of equal length (a = b). The system also includes body-centered tetragonal table 12 (Figure 1). 

In an orthorhombic lattice all of the angles are equal to 90°, while all of its sides are of unequal length. The system needs only to be described by three lattice parameters. This system also includes body-centered orthorhombic, base-centered orthorhombic, and face-centered orthorhombic table 12 (Figure 1). A base-centered lattice has, in addition to the atoms (ions) positioned at the vertices of the orthorhombic lattice, atoms (ions) positioned on just two opposing faces. 

The rhombohedral lattice is also known as trigonal, and has no angles equal to 90°, but all sides are of equal length (a = b = c), thus requiring only by one lattice parameter, and all three angles are equal (α = β = γ [image: image58.png]


). 

A hexagonal crystal structure has two angles equal to 90°, with the other angle (γ [image: image59.png]


) equal to 120°. For this to happen, the two sides surrounding the 120° angle must be equal (a = b), while the third side (c) is at 90° to the other sides and can be of any length. 

The monoclinic lattice has no sides of equal length, but two of the angles are equal to 90°, with the other angle (usually defined as β) being something other than 90°. It is a tilted parallelogram prism with rectangular bases. This system also includes base-centered monoclinic table 12 (Figure 1). 

In the triclinic lattice none of the sides of the unit cell are equal, and none of the angles within the unit cell are equal to 90°. The triclinic lattice is chosen such that all the internal angles are either acute or obtuse. This crystal system has the lowest symmetry and must be described by 3 lattice parameters (a, b, and c) and the 3 angles (α, β, and γ[image: image60.png]


). 

Atom positions, crystal directions and Miller indices

Atom positions and crystal axes 

The structure of a crystal is defined with respect to a unit cell. As the entire crystal consists of repeating unit cells, this definition is sufficient to represent the entire crystal. Within the unit cell, the atomic arrangement is expressed using coordinates. There are two systems of coordinates commonly in use, which can cause some confusion. Both use a corner of the unit cell as their origin. The first, less-commonly seen system is that of Cartesian or orthogonal coordinates (X, Y, Z). These usually have the units of Angstroms and relate to the distance in each direction between the origin of the cell and the atom. These coordinates may be manipulated in the same fashion are used with two- or three-dimensional graphs. It is very simple, therefore, to calculate inter-atomic distances and angles given the Cartesian coordinates of the atoms. Unfortunately, the repeating nature of a crystal cannot be expressed easily using such coordinates. For example, consider a cubic cell of dimension 3.52 Å. Pretend that this cell contains an atom that has the coordinates (1.5, 2.1, 2.4). That is, the atom is 1.5 Å away from the origin in the x direction (which coincides with the a cell axis), 2.1 Å in the y (which coincides with the b cell axis) and 2.4 Å in the z (which coincides with the c cell axis). There will be an equivalent atom in the next unit cell along the x-direction, which will have the coordinates (1.5 + 3.52, 2.1, 2.4) or (5.02, 2.1, 2.4). This was a rather simple calculation, as the cell has very high symmetry and so the cell axes, a, b and c, coincide with the Cartesian axes, X, Y and Z. However, consider lower symmetry cells such as triclinic or monoclinic in which the cell axes are not mutually orthogonal. In such cases, expressing the repeating nature of the crystal is much more difficult to accomplish.

Accordingly, atomic coordinates are usually expressed in terms of fractional coordinates, (x, y, z). This coordinate system is coincident with the cell axes (a, b, c) and relates to the position of the atom in terms of the fraction along each axis. Consider the atom in the cubic cell discussion above. The atom was 1.5 Å in the a direction away from the origin. As the a axis is 3.52 Å long, the atom is (1.5/3.52) or 0.43 of the axis away from the origin. Similarly, it is (2.1/3.52) or 0.60 of the b axis and (2.4/3.5) or 0.68 of the c axis. The fractional coordinates of this atom are, therefore, (0.43, 0.60, 0.68). The coordinates of the equivalent atom in the next cell over in the a direction, however, are easily calculated as this atom is simply 1 unit cell away in a. Thus, all one has to do is add 1 to the x coordinate: (1.43, 0.60, 0.68). Such transformations can be performed regardless of the shape of the unit cell. Fractional coordinates, therefore, are used to retain and manipulate crystal information.

Crystal directions

The designation of the individual vectors within any given crystal lattice is accomplished by the use of whole number multipliers of the lattice parameter of the point at which the vector exits the unit cell. The vector is indicated by the notation [hkl], where h, k, and l are reciprocals of the point at which the vector exits the unit cell. The origination of all vectors is assumed defined as [000]. For example, the direction along the a-axis according to this scheme would be [100] because this has a component only in the a-direction and no component along either the b or c axial direction. A vector diagonally along the face defined by the a and b axis would be [110], while going from one corner of the unit cell to the opposite corner would be in the [111] direction. Figure 2 shows some examples of the various directions in the unit cell. The crystal direction notation is made up of the lowest combination of integers and represents unit distances rather than actual distances. A [222] direction is identical to a [111], so [111] is used. Fractions are not used. For example, a vector that intercepts the center of the top face of the unit cell has the coordinates x = 1/2, y = 1/2, z = 1. All have to be inversed to convert to the lowest combination of integers (whole numbers); i.e., [221] in Figure 2. Finally, all parallel vectors have the same crystal direction, e.g., the four vertical edges of the cell shown in Figure 2 all have the crystal direction [hkl] = [001]. 
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	Figure 2: Some common directions in a cubic unit cell.


Crystal directions may be grouped in families. To avoid confusion there exists a convention in the choice of brackets surrounding the three numbers to differentiate a crystal direction from a family of direction. For a direction, square brackets [hkl] are used to indicate an individual direction. Angle brackets <hkl> indicate a family of directions. A family of directions includes any directions that are equivalent in length and types of atoms encountered. For example, in a cubic lattice, the [100], [010], and [001] directions all belong to the <100> family of planes because they are equivalent. If the cubic lattice were rotated 90°, the a, b, and c directions would remain indistinguishable, and there would be no way of telling on which crystallographic positions the atoms are situated, so the family of directions is the same. In a hexagonal crystal, however, this is not the case, so the [100] and [010] would both be <100> directions, but the [001] direction would be distinct. Finally, negative directions are identified with a bar over the negative number instead of a minus sign. 

Crystal planes 

Planes in a crystal can be specified using a notation called Miller indices. The Miller index is indicated by the notation [hkl] where h, k, and l are reciprocals of the plane with the x, y, and z axes. To obtain the Miller indices of a given plane requires the following steps: 

1. Step 1. The plane in question is placed on a unit cell. 

2. Step 2. Its intercepts with each of the crystal axes are then found. 

3. Step 3. The reciprocal of the intercepts are taken. 

4. Step 4. These are multiplied by a scalar to insure that is in the simple ratio of whole numbers. 

For example, the face of a lattice that does not intersect the y or z axis would be (100), while a plane along the body diagonal would be the (111) plane. An illustration of this along with the (111) and (110) planes is given in Figure 3. 
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	Figure 3: Examples of Miller indices notation or crystal planes.


As with crystal directions, Miller indices directions may be grouped in families. Individual Miller indices are given in parentheses (hkl), while braces {hkl} are placed around the indices of a family of planes. For example, (001), (100), and (010) are all in the {100} family of planes, for a cubic lattice. 

Description of crystal structures 

Crystal structures may be described in a number of ways. The most common manner is to refer to the size and shape of the unit cell and the positions of the atoms (or ions) within the cell. However, this information is sometimes insufficient to allow for an understanding of the true structure in three dimensions. Considerations of several unit cells, the arrangement of the atoms with respects to each other, the number of other atoms they in contact with, and the distances to neighboring atoms, often will provide a better understanding. A number of methods are available to describe extended solid-state structures. The most applicable with regard to elemental and compound semiconductor, metals and the majority of insulators is the close packing approach. 

Atomic coordination

By considering the arrangement of atoms relative to each other, their coordination numbers (or number of nearest neighbors), interatomic distances, types of bonding, etc., it is possible to form a general view of the structures and alternative ways of visualizing then.



Figure 4: HCP lattice (left) and the fcc lattice (right).
Close packing

The principles involved can be understood by considering the most efficient way of packing together equal-sized spheres and stacking close-packed atomic planes in three dimensions. For example, if plane A lies beneath plane B, there are two possible ways of placing an additional atom on top of layer B. If an additional layer was placed directly over plane A, this would give rise to the following series:

...ABABABAB....   see Fig. 4.
This type of crystal structure is known as hexagonal close packing (hcp).

If however, all three planes are staggered relative to each other and it is not until the fourth layer is positioned directly over plane A that the sequence is repeated, then the following sequence arises:

...ABCABCABC...     see Fig. 4.
This type of crystal structure is known as cubic close packing (ccp).

The unit cell of the ccp arrangement is the face-centered cubic (fcc) unit cell. This is not immediately obvious as the closely packed layers are parallel to the {111} planes of the fcc unit cell. There are four different orientations of the close-packed layers.

The packing efficiency could be worked out by calculating the total volume of the spheres and dividing that by the volume of the cell as follows:
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The 74% packing efficiency is the maximum density possible in unit cells constructed of spheres of only one size. Most crystalline forms of metallic elements are hcp, fcc, or bcc (body-centered cubic). The coordination number of hcp and fcc is 12 and its atomic packing factor (APF) is the number mentioned above, 0.74. The APF of bcc is 0.68 for comparison.

Close packed structures: hexagonal close packing and cubic close packing 

Many crystal structures can be described using the concept of close packing. This concept requires that the atoms (ions) are arranged so as to have the maximum density. In order to understand close packing in three dimensions, the most efficient way for equal sized spheres to be packed in two dimensions must be considered. 

The most efficient way for equal sized spheres to be packed in two dimensions is shown in Figure 5, in which it can be seen that each sphere (the dark gray shaded sphere) is surrounded by, and is in contact with, six other spheres (the light gray spheres in Figure 5). It should be noted that contact with six other spheres the maximum possible is the spheres are the same size, although lower density packing is possible. Close packed layers are formed by repetition to an infinite sheet. Within these close packed layers, three close packed rows are present, shown by the dashed lines in Figure 5. 
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	Figure 5: Schematic representation of a close packed layer of equal sized spheres. The close packed rows (directions) are shown by the dashed lines.


The most efficient way for equal sized spheres to be packed in three dimensions is to stack close packed layers on top of each other to give a close packed structure. There are two simple ways in which this can be done, resulting in either a hexagonal or cubic close packed structures. 

Hexagonal close packed 

If two close packed layers A and B are placed in contact with each other so as to maximize the density, then the spheres of layer B will rest in the hollow (vacancy) between three of the spheres in layer A. This is demonstrated in Figure 6. Atoms in the second layer, B (shaded light gray), may occupy one of two possible positions (Figure 6a or b) but not both together or a mixture of each. If a third layer is placed on top of layer B such that it exactly covers layer A, subsequent placement of layers will result in the following sequence ...ABABAB.... This is known as hexagonal close packing or hcp. 

	[image: image66.png](a)
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	Figure 6: Schematic representation of two close packed layers arranged in A (dark grey) and B (light grey) positions. The alternative stacking of the B layer is shown in (a) and (b).


The hexagonal close packed cell is a derivative of the hexagonal Bravais lattice system (Figure 1) with the addition of an atom inside the unit cell at the coordinates (1/3,2/3,1/2). The basal plane of the unit cell coincides with the close packed layers (Figure 7). In other words the close packed layer makes-up the {001} family of crystal planes. 
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	Figure 7: A schematic projection of the basal plane of the hcp unit cell on the close packed layers.


The “packing fraction” in a hexagonal close packed cell is 74.05%; that is 74.05% of the total volume is occupied. The packing fraction or density is derived by assuming that each atom is a hard sphere in contact with its nearest neighbors. Determination of the packing fraction is accomplished by calculating the number of whole spheres per unit cell (2 in hcp), the volume occupied by these spheres, and a comparison with the total volume of a unit cell. The number gives an idea of how “open” or filled a structure is. By comparison, the packing fraction for body-centered cubic (Figure 2) is 68% and for diamond cubic (an important semiconductor structure to be described later) is it 34%. 

Cubic close packed: face-centered cubic 

In a similar manner to the generation of the hexagonal close packed structure, two close packed layers are stacked (Figure 5) however, the third layer (C) is placed such that it does not exactly cover layer A, while sitting in a set of troughs in layer B (Figure 8), then upon repetition the packing sequence will be ...ABCABCABC.... This is known as cubic close packing or ccp. 
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	Figure 8: Schematic representation of the three close packed layers in a cubic close packed arrangement: A (dark grey), B (medium grey), and C (light grey).


The unit cell of cubic close packed structure is actually that of a face-centered cubic (fcc) Bravais lattice. In the fcc lattice the close packed layers constitute the {111} planes. As with the hcp lattice packing fraction in a cubic close packed (fcc) cell is 74.05%. Since face centered cubic or fcc is more commonly used in preference to cubic close packed (ccp) in describing the structures, the former will be used throughout this text. 

Coordination number 

The coordination number of an atom or ion within an extended structure is defined as the number of nearest neighbor atoms (ions of opposite charge) that are in contact with it. A slightly different definition is often used for atoms within individual molecules: the number of donor atoms associated with the central atom or ion. However, this distinction is rather artificial, and both can be employed. 

The coordination numbers for metal atoms in a molecule or complex are commonly 4, 5, and 6, but all values from 2 to 9 are known and a few examples of higher coordination numbers have been reported. In contrast, common coordination numbers in the solid state are 3, 4, 6, 8, and 12. For example, the atom in the center of body-centered cubic lattice has a coordination number of 8, because it touches the eight atoms at the corners of the unit cell, while an atom in a simple cubic structure would have a coordination number of 6. In both fcc and hcp lattices each of the atoms have a coordination number of 12. 

Octahedral and tetrahedral vacancies 

As was mentioned above, the packing fraction in both fcc and hcp cells is 74.05%, leaving 25.95% of the volume unfilled. The unfilled lattice sites (interstices) between the atoms in a cell are called interstitial sites or vacancies. The shape and relative size of these sites is important in controlling the position of additional atoms. In both fcc and hcp cells most of the space within these atoms lies within two different sites known as octahedral sites and tetrahedral sites. The difference between the two lies in their “coordination number”, or the number of atoms surrounding each site. Tetrahedral sites (vacancies) are surrounded by four atoms arranged at the corners of a tetrahedron. Similarly, octahedral sites are surrounded by six atoms which make-up the apices of an octahedron. For a given close packed lattice an octahedral vacancy will be larger than a tetrahedral vacancy. 

Within a face centered cubic lattice, the eight tetrahedral sites are positioned within the cell, at the general fractional coordinate of (n/4,n/4,n/4) where n = 1 or 3, e.g., (1/4,1/4,1/4), (1/4,1/4,3/4), etc. The octahedral sites are located at the center of the unit cell (1/2,1/2,1/2), as well as at each of the edges of the cell, e.g., (1/2,0,0). In the hexagonal close packed system, the tetrahedral sites are at (0,0,3/8) and (1/3,2/3,7/8), and the octahedral sites are at (1/3,1/3,1/4) and all symmetry equivalent positions. 

Important structure types

The majority of crystalline materials do not have a structure that fits into the one atom per site simple Bravais lattice. A number of other important crystal structures are found, however, only a few of these crystal structures are those of which occur for the elemental and compound semiconductors and the majority of these are derived from fcc or hcp lattices. Each structural type is generally defined by an archetype, a material (often a naturally occurring mineral) which has the structure in question and to which all the similar materials are related. With regard to commonly used elemental and compound semiconductors the important structures are diamond, zinc blende, Wurtzite, and to a lesser extent chalcopyrite. However, rock salt, β-tin, cinnabar and cesium chloride are observed as high pressure or high temperature phases and are therefore also discussed. The following provides a summary of these structures. Details of the full range of solid-state structures are given elsewhere. 

Diamond Cubic 

The diamond cubic structure consists of two interpenetrating face-centered cubic lattices, with one offset 1/4 of a cube along the cube diagonal. It may also be described as face centered cubic lattice in which half of the tetrahedral sites are filled while all the octahedral sites remain vacant. The diamond cubic unit cell is shown in Figure 9. Each of the atoms (e.g., C) is four coordinate, and the shortest interatomic distance (C-C) may be determined from the unit cell parameter (a). 
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	Figure 9: Unit cell structure of a diamond cubic lattice showing the two interpenetrating face-centered cubic lattices.


Zinc blende 

This is a binary phase (ME) and is named after its archetype, a common mineral form of zinc sulfide (ZnS). As with the diamond lattice, zinc blende consists of the two interpenetrating fcc lattices. However, in zinc blende one lattice consists of one of the types of atoms (Zn in ZnS), and the other lattice is of the second type of atom (S in ZnS). It may also be described as face centered cubic lattice of S atoms in which half of the tetrahedral sites are filled with Zn atoms. All the atoms in a zinc blende structure are 4-coordinate. The zinc blende unit cell is shown in Figure 10. A number of inter-atomic distances may be calculated for any material with a zinc blende unit cell using the lattice parameter (a). 
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	Figure 10: Unit cell structure of a zinc blende (ZnS) lattice. Zinc atoms are shown in green (small), sulfur atoms shown in red (large), and the dashed lines show the unit cell.


Chalcopyrite 

The mineral chalcopyrite CuFeS2 is the archetype of this structure. The structure is tetragonal (a = b ≠ c, α = β = γ [image: image74.png]


= 90°, and is essentially a superlattice on that of zinc blende. Thus, is easiest to imagine that the chalcopyrite lattice is made-up of a lattice of sulfur atoms in which the tetrahedral sites are filled in layers, ...FeCuCuFe..., etc. (Figure 11). In such an idealized structure c = 2a, however, this is not true of all materials with chalcopyrite structures. 
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	Figure 11: Unit cell structure of a chalcopyrite lattice. Copper atoms are shown in blue, iron atoms are shown in green and sulfur atoms are shown in yellow. The dashed lines show the unit cell.


Rock salt 

As its name implies the archetypal rock salt structure is NaCl (table salt). In common with the zinc blende structure, rock salt consists of two interpenetrating face-centered cubic lattices. However, the second lattice is offset 1/2a along the unit cell axis. It may also be described as face centered cubic lattice in which all of the octahedral sites are filled, while all the tetrahedral sites remain vacant, and thus each of the atoms in the rock salt structure are 6-coordinate. The rock salt unit cell is shown in Figure 12. A number of inter-atomic distances may be calculated for any material with a rock salt structure using the lattice parameter (a). 
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	Figure 12: Unit cell structure of a rock salt lattice. Sodium ions are shown in purple (small spheres) and chloride ions are shown in red (large spheres).


Cinnabar 

Cinnabar, named after the archetype mercury sulfide, HgS, is a distorted rock salt structure in which the resulting cell is rhombohedral (trigonal) with each atom having a coordination number of six.
Wurtzite 

This is a hexagonal form of the zinc sulfide. It is identical in the number of and types of atoms, but it is built from two interpenetrating hcp lattices as opposed to the fcc lattices in zinc blende. As with zinc blende all the atoms in a wurtzite structure are 4-coordinate. The wurtzite unit cell is shown in Figure 13. A number of inter atomic distances may be calculated for any material with a wurtzite cell using the lattice parameter (a). 
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However, it should be noted that these formulae do not necessarily apply when the ratio a/c is different from the ideal value of 1.632. 
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	Figure 13: Unit cell structure of a wurtzite lattice. Zinc atoms are shown in green (small spheres), sulfur atoms shown in red (large spheres), and the dashed lines show the unit cell.


Cesium Chloride 

The cesium chloride structure is found in materials with large cations and relatively small anions. It has a simple (primitive) cubic cell (Figure 2) with a chloride ion at the corners of the cube and the cesium ion at the body center. The coordination numbers of both Cs+ and Cl-, with the inner atomic distances determined from the cell lattice constant (a). 
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β-Tin
The room temperature allotrope of tin is β-tin or white tin. It has a tetragonal structure, in which each tin atom has four nearest neighbors (Sn-Sn = 3.016 Å) arranged in a very flattened tetrahedron, and two next nearest neighbors (Sn-Sn = 3.175 Å). The overall structure of β-tin consists of fused hexagons, each being linked to its neighbor via a four-membered Sn4 ring. 

Defects in crystalline solids 

Up to this point we have only been concerned with ideal structures for crystalline solids in which each atom occupies a designated point in the crystal lattice. Unfortunately, defects ordinarily exist in equilibrium between the crystal lattice and its environment. These defects are of two general types: point defects and extended defects. As their names imply, point defects are associated with a single crystal lattice site, while extended defects occur over a greater range. 
	Point defects: “too many or too few” or “just plain wrong” 
Point defects have a significant effect on the properties of a semiconductor, so it is important to understand the classes of point defects and the characteristics of each type. Figure 14 summarizes various classes of native point defects, however, they may be divided into two general classes; defects with the wrong number of atoms (deficiency or surplus) and defects where the identity of the 
atoms is incorrect.
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	Figure 14: Point defects in a crystal lattice.


Interstitial Impurity 

An interstitial impurity occurs when an extra atom is positioned in a lattice site that should be vacant in an ideal structure (Figure 14b). Since all the adjacent lattice sites are filled the additional atom will have to squeeze itself into the interstitial site, resulting in distortion of the lattice and alteration in the local electronic behavior of the structure. Small atoms, such as carbon, will prefer to occupy these interstitial sites. Interstitial impurities readily diffuse through the lattice via interstitial diffusion, which can result in a change of the properties of a material as a function of time. Oxygen impurities in silicon generally are located as interstitials. 

Vacancies 

The converse of an interstitial impurity is when there are not enough atoms in a particular area of the lattice. These are called vacancies. Vacancies exist in any material above absolute zero and increase in concentration with temperature. In the case of compound semiconductors, vacancies can be either cation vacancies (Figure 14c) or anion vacancies (Figure 14d), depending on what type of atom are “missing”. 

Substitution 

Substitution of various atoms into the normal lattice structure is common, and used to change the electronic properties of both compound and elemental semiconductors. Any impurity element that is incorporated during crystal growth can occupy a lattice site. Depending on the impurity, substitution defects can greatly distort the lattice and/or alter the electronic structure. In general, cations will try to occupy cation lattice sites (Figure 14e), and anion will occupy the anion site (Figure 14f). For example, a zinc impurity in GaAs will occupy a gallium site, if possible, while a sulfur, selenium and tellurium atoms would all try to substitute for an arsenic. Some impurities will occupy either site indiscriminately, e.g., Si and Sn occupy both Ga and As sites in GaAs. 

Antisite Defects 

Antisite defects are a particular form of substitution defect, and are unique to compound semiconductors. An antisite defect occurs when a cation is misplaced on an anion lattice site or vice versa (Figure 14g and h). Dependant on the arrangement these are designated as either AB antisite defects or BA antisite defects. For example, if an arsenic atom is on a gallium lattice site the defect would be an AsGa defect. Antisite defects involve fitting into a lattice site atoms of a different size than the rest of the lattice, and therefore this often results in a localized distortion of the lattice. In addition, cations and anions will have a different number of electrons in their valence shells, so this substitution will alter the local electron concentration and the electronic properties of this area of the semiconductor. 

Extended Defects: Dislocations in a Crystal Lattice 

Extended defects may be created either during crystal growth or as a consequence of stress in the crystal lattice. The plastic deformation of crystalline solids does not occur such that all bonds along a plane are broken and reformed simultaneously. Instead, the deformation occurs through a dislocation in the crystal lattice. Figure 15 shows a schematic representation of a dislocation in a crystal lattice. Two features of this type of dislocation are the presence of an extra crystal plane, and a large void at the dislocation core. Impurities tend to segregate to the dislocation core in order to relieve strain from their presence. 
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	Figure 15: Dislocation in a crystal lattice.


Epitaxy 

Epitaxy, is a transliteration of two Greek words epi, meaning "upon", and taxis, meaning "ordered". With respect to crystal growth it applies to the process of growing thin crystalline layers on a crystal substrate. In epitaxial growth, there is a precise crystal orientation of the film in relation to the substrate. The growth of epitaxial films can be done by a number of methods including molecular beam epitaxy, atomic layer epitaxy, and chemical vapor deposition, all of which will be described later. 

Epitaxy of the same material, such as a gallium arsenide film on a gallium arsenide substrate, is called homoepitaxy, while epitaxy where the film and substrate material are different is called heteroepitaxy. Clearly, in homoepitaxy, the substrate and film will have the identical structure, however, in heteroepitaxy, it is important to employ where possible a substrate with the same structure and similar lattice parameters. For example, zinc selenide (zinc blende, a = 5.668 Å) is readily grown on gallium arsenide (zinc blende, a = 5.653 Å). Alternatively, epitaxial crystal growth can occur where there exists a simple relationship between the structures of the substrate and crystal layer, such as is observed between Al2O3 (100) on Si (100). Whichever route is chosen a close match in the lattice parameters is required, otherwise, the strains induced by the lattice mismatch results in distortion of the film and formation of dislocations. If the mismatch is significant epitaxial growth is not energetically favorable, causing a textured film or polycrystalline untextured film to be grown. As a general rule of thumb, epitaxy can be achieved if the lattice parameters of the two materials are within about 5% of each other. For good quality epitaxy, this should be less than 1%. The larger the mismatch, the larger the strain in the film. As the film gets thicker and thicker, it will try to relieve the strain in the film, which could include the loss of epitaxy of the growth of dislocations. It is important to note that the <100> directions of a film must be parallel to the <100> direction of the substrate. In some cases, such as Fe on MgO, the [111] direction is parallel to the substrate [100]. The epitaxial relationship is specified by giving first the plane in the film that is parallel to the substrate [100]. 
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• In crystalline materials:
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SIMPLE CUBIC STRUCTURE (SC)
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Adapted from Fig. 3.2,

Callister 6e.
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•  Close packed directions are cube diagonals.

--Note:  All atoms are identical; the center atom is shaded

differently only for ease of viewing.

BODY CENTERED CUBIC STRUCTURE (BCC)
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Adapted from Fig. 3.1(a),

Callister 6e.

(Courtesy P.M. Anderson)

•  Close packed directions are face diagonals.

--Note:  All atoms are identical; the face-centered atoms are shaded

differently only for ease of viewing.

FACE CENTERED CUBIC STRUCTURE (FCC)
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Ideally, c/a = 1.633 for close packing

However, in most metals, c/a ratio deviates from this value
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Crystal structure coordination # packing factor close packed directions

• Simple Cubic (SC) 6 0.52 cube edges

• Body Centered Cubic (BCC) 8 0.68 body diagonal

• Face Centered Cubic (FCC) 12 0.74 face diagonal

• Hexagonal Close Pack (HCP) 12 0.74 hexagonal side
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As pointed out on the previous page, there are 14 different types of crystal unit cell structures or lattices are found in nature. However most metals and many other solids have unit cell structures described as body center cubic (bcc), face centered cubic (fcc) or Hexagonal Close Packed (hcp). Since these structures are most common, they will be discussed in more detail. 

Body-Centered Cubic (BCC) Structure
The body-centered cubic unit cell has atoms at each of the eight corners of a cube (like the cubic unit cell) plus one atom in the center of the cube (left image below). Each of the corner atoms is the corner of another cube so the corner atoms are shared among eight unit cells. It is said to have a coordination number of 8. The bcc unit cell consists of a net total of two atoms; one in the center and eight eighths from corners atoms as shown in the middle image below (middle image below). The image below highlights a unit cell in a larger section of the lattice.
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The bcc arrangement does not allow the atoms to pack together as closely as the fcc or hcp arrangements. The bcc structure is often the high temperature form of metals that are close-packed at lower temperatures. The volume of atoms in a cell per the total volume of a cell is called the packing factor. The bcc unit cell has a packing factor of 0.68. 

Some of the materials that have a bcc structure include lithium, sodium, potassium, chromium, barium, vanadium, alpha-iron and tungsten. Metals which have a bcc structure are usually harder and less malleable than close-packed metals such as gold. When the metal is deformed, the planes of atoms must slip over each other, and this is more difficult in the bcc structure. It should be noted that there are other important mechanisms for hardening materials, such as introducing impurities or defects which make slipping more difficult. These hardening mechanisms will be discussed latter.
Face Centered Cubic (FCC) Structure 
The face centered cubic structure has atoms located at each of the corners and the centers of all the cubic faces (left image below). Each of the corner atoms is the corner of another cube so the corner atoms are shared among eight unit cells. Additionally, each of its six face centered atoms is shared with an adjacent atom. Since 12 of its atoms are shared, it is said to have a coordination number of 12. The fcc unit cell consists of a net total of four atoms; eight eighths from corners atoms and six halves of the face atoms as shown in the middle image above. The image below highlights a unit cell in a larger section of the lattice. 
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In the fcc structure (and the hcp structure) the atoms can pack closer together than they can in the bcc structure. The atoms from one layer nest themselves in the empty space between the atoms of the adjacent layer. To picture packing arrangement, imagine a box filled with a layer of balls that are aligned in columns and rows. When a few additional balls are tossed in the box, they will not balance directly on top of the balls in the first layer but instead will come to rest in the pocket created between four balls of the bottom layer. As more balls are added they will pack together to fill up all the pockets. The packing factor (the volume of atoms in a cell per the total volume of a cell) is 0.74 for fcc crystals. Some of the metals that have the fcc structure include aluminum, copper, gold, iridium, lead, nickel, platinum and silver.

Hexagonal Close Packed (HPC) Structure
Another common close packed structure is the hexagonal close pack. The hexagonal structure of alternating layers is shifted so its atoms are aligned to the gaps of the preceding layer. The atoms from one layer nest themselves in the empty space between the atoms of the adjacent layer just like in the fcc structure. However, instead of being a cubic structure, the pattern is hexagonal. (See image below.) The difference between the HPC and FCC structure is discussed later in this section. 
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The hcp structure has three layers of atoms. In each the top and bottom layer, there are six atoms that arrange themselves in the shape of a hexagon and a seventh atom that sits in the middle of the hexagon. The middle layer has three atoms nestle in the triangular "grooves" of the top and bottom plane. Note that there are six of these "grooves" surrounding each atom in the hexagonal plane, but only three of them can be filled by atoms.

As shown in the middle image above, there are six atoms in the hcp unit cell. Each of the 12 atoms in the corners of the top and bottom layers contribute 1/6 atom to the unit cell, the two atoms in the center of the hexagon of both the top and bottom layers each contribute ½ atom and each of the three atom in the middle layer contribute 1 atom. The image on the right above attempts to show several hcp unit cells in a larger lattice. 

The coordination number of the atoms in this structure is 12. There are six nearest neighbors in the same close packed layer, three in the layer above and three in the layer below. The packing factor is 0.74, which is the same as the fcc unit cell. The hcp structure is very common for elemental metals and some examples include beryllium, cadmium, magnesium, titanium, zinc and zirconium. Q1.6.3 Which figure (1.6.9 or 1.6.10) correspondes to so called heavy holes? 
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Index by Space Group


Space groups are listed in the order they appear in the Crystallographic Tables.

Where it conflicts with the Crystallographic Tables we use the notation in Pearson's Handbook.

Space Group generators, Wyckoff positions, etc., are available online via the very useful Bilbao Crystallographic Server, and at the National Research Council of Canada's Generation of standard and alternate settings of the 230 Space Groups page. The easiest way to find information about a given space group is to use the Table of Space Group Symbols.

We also have more information on how space groups are presented here.

Each class of space groups corresponds to certain Pearson Symbols. Clicking on the appropriate symbol will take you to that part of the Pearson Symbol Index,
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Crystallographic point group
In crystallography, a crystallographic point group is a set of symmetry operations, like rotations or reflections, that leave a central point fixed while moving other directions and faces of the crystal to the positions of features of the same kind. For a true crystal (as opposed to a quasicrystal), the group must also be consistent with maintenance of the three-dimensional translational symmetry that defines crystallinity. The macroscopic properties of a crystal would look exactly the same before and after any of the operations in its point group. In the classification of crystals, each point group is also known as a crystal class.
There are infinitely many three-dimensional point groups; However, the crystallographic restriction of the infinite families of general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms.

The point group of a crystal, among other things, determines directional variation of the physical properties that arise from its structure, including optical properties such as whether it is birefringent, or whether it shows the Pockels effect.
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Notation
The point groups are denoted by their component symmetries. There are a few standard notations used by crystallographers, mineralogists, and physicists.

For the correspondence of the two systems below, see crystal system.

[edit] Schoenflies notation

Main article: Schoenflies notation
For more details on this topic, see Point groups in three dimensions.

In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following:

· Cn (for cyclic) indicates that the group has an n-fold rotation axis. Cnh is Cn with the addition of a mirror (reflection) plane perpendicular to the axis of rotation. Cnv is Cn with the addition of a mirror plane parallel to the axis of rotation.

· S2n (for Spiegel, German for mirror) denotes a group that contains only a 2n-fold rotation-reflection axis.

· Dn (for dihedral, or two-sided) indicates that the group has an n-fold rotation axis plus n twofold axes perpendicular to that axis. Dnh has, in addition, a mirror plane perpendicular to the n-fold axis. Dnd has, in addition to the elements of Dn, mirror planes parallel to the n-fold axis.

· The letter T (for tetrahedron) indicates that the group has the symmetry of a tetrahedron. Td includes improper rotation operations, T excludes improper rotation operations, and Th is T with the addition of an inversion.

· The letter O (for octahedron) indicates that the group has the symmetry of an octahedron (or cube), with (Oh) or without (O) improper operations (those that change handedness).

Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space.

	n
	1
	2
	3
	4
	6

	Cn
	C1
	C2
	C3
	C4
	C6

	Cnv
	C1v=C1h
	C2v
	C3v
	C4v
	C6v

	Cnh
	C1h
	C2h
	C3h
	C4h
	C6h

	Dn
	D1=C2
	D2
	D3
	D4
	D6

	Dnh
	D1h=C2v
	D2h
	D3h
	D4h
	D6h

	Dnd
	D1d=C2h
	D2d
	D3d
	D4d
	D6d

	S2n
	S2
	S4
	S6
	S8
	S12


D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups.

[edit] Hermann–Mauguin notation

Main article: Hermann–Mauguin notation
An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are

	1
	1

	2
	
	2⁄m
	222
	m
	mm2
	mmm

	3
	3
	
	32
	3m
	3m
	

	4
	4
	4⁄m
	422
	4mm
	42m
	4⁄mmm

	6
	6
	6⁄m
	622
	6mm
	62m
	6⁄mmm

	23
	m3
	432
	43m
	m3m
	
	


[edit] The correspondence between different notations

	Crystal family
	Crystal system
	Hermann-Mauguin
(full symbol)
	Hermann-Mauguin
(short symbol)
	Shubnikov[1]
	Schoenflies
	Orbifold
	Coxeter
	Order

	Triclinic
	1
	1
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	C1
	11
	[ ]+
	1

	
	1
	1
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	Ci = S2
	x
	[1+,2+]
	2

	Monoclinic
	2
	2
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	C2
	22
	[2]+
	2

	
	m
	m
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	Cs = C1h
	*
	[ ]
	2
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	2/m
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	C2h
	2*
	[2,2+]
	4

	Orthorhombic
	222
	222
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	D2 = V
	222
	[2,2]+
	4

	
	mm2
	mm2
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	C2v
	*22
	[2]
	4
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	mmm
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	D2h
	*222
	[2,2]
	8

	Tetragonal
	4
	4
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	C4
	44
	[4]+
	4

	
	4
	4
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	S4
	2x
	[2+,4+]
	4
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	4/m
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	C4h
	4*
	[2,4+]
	8

	
	422
	422
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	D4
	422
	[4,2]+
	8

	
	4mm
	4mm
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	C4v
	*44
	[4]
	8

	
	42m
	42m
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	D2d
	2*2
	[2+,4]
	8
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	4/mmm
	[image: image127.png]



	D4h
	*422
	[4,2]
	16

	Hexagonal
	Trigonal
	3
	3
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	C3
	33
	[3]+
	3

	
	
	3
	3
	[image: image129.png]



	S6 = C3i
	3x
	[2+,6+]
	6

	
	
	32
	32
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	D3
	322
	[3,2]+
	6

	
	
	3m
	3m
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	C3v
	*33
	[3]
	6
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	3m
	[image: image133.png]



	D3d
	2*3
	[2+,6]
	12

	
	Hexagonal
	6
	6
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	C6
	66
	[6]+
	6

	
	
	6
	6
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	C3h
	3*
	[2,3+]
	6
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	6/m
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	C6h
	6*
	[2,6+]
	12

	
	
	622
	622
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	D6
	622
	[6,2]+
	12

	
	
	6mm
	6mm
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	C6v
	*66
	[6]
	12

	
	
	6m2
	6m2
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	D3h
	*322
	[3,2]
	12
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	6/mmm
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	D6h
	*622
	[6,2]
	24

	Cubic
	23
	23
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	T
	332
	[3,3]+
	12

	
	[image: image144.png]=5 [b



3
	m3
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	Th
	3*2
	[3+,4]
	24

	
	432
	432
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	O
	432
	[4,3]+
	24

	
	43m
	43m
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	Td
	*332
	[3,3]
	24
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	m3m
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	Oh
	*432
	[4,3]
	48
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1. Crystal structures

1.1 Primitive lattice Cell

An ideal crystal is constructed by the infinite repetition of identical structural units in space. In the simplest crystals the structural unit is a single atom, as in copper, silver, gold, iron, aluminium, and the alkali metals. 

The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to every lattice point. The group of atoms is called the basis; when repeated in space it forms the crystal structure. The basis consists of a primitive cell, containing one single lattice point. Arranging one cell at each lattice point will fill up the entire crystal. 

1.2 Simple Crystal Structures

There are several types of crystal structures. The simplest one is the simple cubic lattice (sc). Two other cubic lattices are the body-centered (bcc) and the face-centered (fcc) cubic lattice. 

	




	
	




	Figure 1.2.1. Body-centered cubic (bcc) lattice
	Figure 1.2.2. Face-centered cubic (fcc) lattice


1.3 Diamond and zinkblend lattice structures

The diamond lattice structure is very common in semiconductor materials, Si, Ge. GaAs and GaP has a zinkblende lattice structure which is similar to the diamond lattice structure. The difference between the face-centered lattice structure and the diamond lattice structure is four atoms (see pictures). In the GaAs these four atoms are Ga-atoms and the rest are As-atoms. 

	




Figure 1.3.1. Diamond lattice structure

1.4 Reciprocal lattice

The electron density at each atom depends on the number of electrons per atom, binding type and the lattice structure. The lattice structure is periodical in 3D and therefore is the electron density periodical in 3D. A periodic function can be expanded into a Fourier series. We are often familiar with the concept of Fourier series in one dimension (from signal theory), while Fourier series in 3D feels more abstract. However, the extention of the Fourier analysis to periodical functions in 3D is straightforward and it turns out that we can write the Fourier series in the same way as: 
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To proceed further with the Fourier analysis of the electron concentration we must find the vectors G of the Fourier sum. G can be constructed from the axis vectors b1, b2, b3 of the reciprocal lattice: 
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The vectors a1, a2, a3 are primitive translation vectors or primitive basis for the real space lattice, while b1, b2, b3 are primitive translation vectors or primitive basis for the reciprocal lattice. G is called a reciprocal lattice vector. All reciprocal lattice vectors can be expressed as a linear combination of b1, b2, b3 using integer coefficients. Exemples of reciprocal lattice vectors: 


G=b1+b2+b3 

G=b1-2*b2+2*b3 

G=-3*b1-10*b2-2*b3
	




	
	




	Figure 1.4.1. Real space lattice
	Figure 1.4.2. Reciprocal lattice


Q1.4.1 Which type of lattice structures are the real space lattice in figure 1.4.1 and the corresponding reciprocal lattice in figure 1.4.2 (the red atoms are the corners of the primitive cell)? 

The reciprocal lattice is a lattice in the Fourier space associated with the crystal. Wavevectors are allways drawn in Fourier space, so that every position in Fourier space may have a meaning as a description of a wave, but there is a special significance to the points defined by the set of G's associated with a crystal structure. The set of reciprocal lattice vectors G determines the possible x-ray reflections (Bragg reflections). This makes it possible to study the reciprocal lattice structure using x-ray diffraction. 

1.5 Brillouin zones

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice. A wigner-Seitz primitive cell can be constructed following this procedure: 

  draw lines to connect a given lattice point to all nearby lattice points. 

  at the midpoint and normal to these lines, draw new lines or planes. 

  the smallest volyme enclosed in this way is the Wigner-Seits primitive cell. 

In the following illustrations several Brillouin zones has been constructed including the first zone (marked as green) for two different reciprocal lattices. 

	




	
	




	Figure 1.5.1. The construction of Brillouin zones in a square reciprocal lattice in two dimensions
	Figure 1.5.2. The construction of Brillouin zones in an oblique reciprocal lattice in two dimensions


This procedure gives the first Brillouin zone which plays an important roll in the field of solid state electronics. The allowed energy levels within the first Brillouin zone is directly related to the electrical properties of the material. 

Q1.5.1 Find the corners of the polygon holding the first Brillouin zone for a 2D lattice with the primitive vectors of the crystal as a1=a*[10x+y]/sqrt(26), a2=a*[x+5y]/sqrt(26). 

1.6 Origin of the Energy Gap in solids

In this section we will look upon an electron as a propagating wave, as first suggested by de Broglie. A wave propagating in a crystal can be disturbed by Bragg reflection. The propability to find an electron at a certain location can be calculated using the Schrödinger equation. At Bragg reflections wavelike solutions to the Schrödinger equation do not exist. 

The Bragg condition is: 
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In one dimension the condition becomes: 
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where n=1,2,3..... and a is the lattice constant. 

The first reflection and the first energy gap occurs at n=1. 
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Figure 1.6.1 Left: Plot of energy versus wavevector k for a free electron. Right: Plot of energy versus wavevector k for an electron in a monatomic linear lattice of lattice constant a.

The energy gap Eg is assosiated with the first Bragg reflection at the first Brillouin zone boundary (n=1). The Bragg reflections at the zone boundaries will make standing waves in the crystal. A wave that travels neither to the left nor to the right is a standing wave: it does not go anywhere. There are two different standing waves that can occure: one representing the difference of a right and a left-directed wave and one representing the sum of a right and a left-directed wave. In figure 1.6.3 the first is called standing wave 1 and the second standing wave 2. 
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Figure 1.6.2 One dimensional periodic potential
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Figure 1.6.3 Distribution of probability density in the periodic potential for standing wave 1 and 2. The standing wave 1 piles up charges in the region between the ion cores while standing wave 2 piles up charges around the core points.

The standing wave 2 piles up electrons around the postitive ion cores, which means that the average potential energy will be lower than for a free traveling wave (constant probability density). The potential energy corresponding to standing wave 1 will have higher potential energy than a free traveling wave, since it piles up electrons between the ion cores (not compensated by positive ions). The energy difference between the standing waves is the origin to the energy gap Eg. 

The relation between the electron energy and the electron wave vector is called the band structure. The band structure is directly related to the crystall structure of the material. In the following section we will calculate the band structure for a square-well periodic potential. Band structure calculation of a real lattice is much more complicated and this exemple should be looked upon as a simple demonstration. 
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Figure 1.6.4 One dimesional periodic potential model.


We will use the limit where U0 approaching positive infinity and b approaches zero (a series of delta functions). Solving the Schrödinger equation in for this potential structure gives the following band structure. 
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Figure 1.6.5 Normalized energy versus normalized wave vector for the potential structure shown in figure 1.6.4. Note that the energy gap is always at the zone boundaries.


The band structure in figure 1.6.5 is plotted in several Brillouin zones. Usually a band structure is only plotted in the first Brillouin zone. We can transform figure 1.6.5 into a first brillouin zone plot by adding reciprocal lattice vectors until we get the proper format as in figure 1.6.6. 
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Figure 1.6.6 Normalized energy versus normalized wave vector in the first Brillouin zone for the potential structure shown in figure 1.6.4.


Real crystals are three dimensional, which means that there are energy values associated with each wave vector k=(kx,ky,kz). The band structure is in general divided into several bands, band 1, band 2, band 3 and so on. Figure 1.6.7a and figure 1.6.7b shows two of the Silicon band. 

	




Figure 1.6.7a The first conduction band in Silicon.

	




Figure 1.6.7b The second conduction band in Silicon.



The band structure will deside how many wave vector states that are available for each energy level. If we consider all the available wave vectors for a specific energy level, we will be able to construct a 3D surface for each energy level. If we integrate all the available wave vectors in the 3D surface and multiply it with two (including spin up and spin down), we will get the total available wave vector states associated with that particular energy level (density of states). In figure 1.6.8 to 1.6.10, constant energy surfaces have been plotted for the first conduction band and the first and second valence band in silicon. 

	




Figure 1.6.8 Constant energy surface for the first conduction band in Silicon. Notice that the energy minima is not located at the first Brillouin zone. The energy value is 0.25eV above the conduction band minima. (The MPEG-movie starts at 0.0eV and stops at 0.25eV above the minima.)

	




Figure 1.6.9 Constant energy surface for the first valence band in Silicon. The wrapped sphere is located at the center of the first Brillouin zone. The energy value is 0.5eV below the valence band maxima. (The MPEG-movie starts at 0.01eV and stops at 0.5eV below the maxima.)

	




Figure 1.6.10 Constant energy surface for the second valence band in Silicon. The wraped sphere is located at the center of the first Brillouin zone. The energy value is 0.5eV below the valence band maxima. (The MPEG-movie starts at 0.01eV and stops at 0.5eV below the maxima.)

Newtons equations for an electron in a semiconductor crystal can be written as: 
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Notice that the electric field will change the electron position in the reciprocal space and the corresponding movement in real space depends on the gradient of the band structure. 

Q1.6.1 In figure 1.6.8 to 1.6.10 constant energy surfaces has ben plotted in the first Brillouin zone. How can we see that the band gap between valence and conduction band is indirect? 

Q1.6.2 The effective mass approximation assumes that we can consider the electron or hole as a free particle. What is the difference between figure 1.6.8 to 1.6.10 and the corresponding energy bands using an effective mass appoach? 

Hint: The band structure for an effective mass model is: 
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Q1.6.3 An electron is located at r0=[0,0,0], k0=[0,0,0] and a constant electric field of 10KV/cm is applied in the [1,1,0] direction. Use an effective mass band structure to find the final position of the electron in k-space and in r-space after 0.1 ps. 
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Crystal structure

In mineralogy and crystallography, crystal structure is a unique arrangement of atoms or molecules in a crystalline liquid or solid. A crystal structure is composed of a pattern, a set of atoms arranged in a particular way, and a lattice exhibiting long-range order and symmetry. Patterns are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought of as forming identical tiny boxes, called unit cells, that fill the space of the lattice. The lengths of the edges of a unit cell and the angles between them are called the lattice parameters. The symmetry properties of the crystal are embodied in its space group.

A crystal's structure and symmetry play a role in determining many of its physical properties, such as cleavage, electronic band structure, and optical transparency.





Insulin crystals
	Contents

[hide] 

· 1 Unit cell
· 1.1 Miller indices
· 1.2 Planes and directions
· 1.2.1 Cubic structures
· 2 Classification
· 2.1 Lattice systems
· 2.2 Atomic coordination
· 2.2.1 Close packing
· 2.3 Bravais lattices
· 2.4 Point groups
· 2.5 Space groups
· 3 Grain boundaries
· 4 Defects and impurities
· 5 Prediction of structure
· 6 Polymorphism
· 7 Physical properties
· 8 See also
· 9 References
· 10 External links


Unit cell

The crystal structure of a material or the arrangement of atoms within a given type of crystal structure can be described in terms of its unit cell. The unit cell is a small box containing one or more atoms, a spatial arrangement of atoms. The unit cells stacked in three-dimensional space describe the bulk arrangement of atoms of the crystal. The crystal structure has a three-dimensional shape. The unit cell is given by its lattice parameters, which are the length of the cell edges and the angles between them, while the positions of the atoms inside the unit cell are described by the set of atomic positions (xi , yi , zi) measured from a lattice point.

· 

Simple cubic (P)

· 

Body-centered cubic (I)

· 

Face-centered cubic (F)

Miller indices

Main article: Miller index




Planes with different Miller indices in cubic crystals

Vectors and atomic planes in a crystal lattice can be described by a three-value Miller index notation (ℓmn). The ℓ, m, and n directional indices are separated by 90°, and are thus orthogonal. In fact, the ℓ component is mutually perpendicular to the m and n indices.

By definition, (ℓmn) denotes a plane that intercepts the three points a1/ℓ, a2/m, and a3/n, or some multiple thereof. That is, the Miller indices are proportional to the inverses of the intercepts of the plane with the unit cell (in the basis of the lattice vectors). If one or more of the indices is zero, it simply means that the planes do not intersect that axis (i.e., the intercept is "at infinity").

Considering only (ℓmn) planes intersecting one or more lattice points (the lattice planes), the perpendicular distance d between adjacent lattice planes is related to the (shortest) reciprocal lattice vector orthogonal to the planes by the formula:

[image: image183.png]



Planes and directions

The crystallographic directions are fictitious lines linking nodes (atoms, ions or molecules) of a crystal. Likewise, the crystallographic planes are fictitious planes linking nodes. Some directions and planes have a higher density of nodes. These high density planes have an influence on the behavior of the crystal as follows:

· Optical properties: Refractive index is directly related to density (or periodic density fluctuations).

· Adsorption and reactivity: Physical adsorption and chemical reactions occur at or near surface atoms or molecules. These phenomena are thus sensitive to the density of nodes.

· Surface tension: The condensation of a material means that the atoms, ions or molecules are more stable if they are surrounded by other similar species. The surface tension of an interface thus varies according to the density on the surface.



Dense crystallographic planes

· Microstructural defects: Pores and crystallites tend to have straight grain boundaries following higher density planes.

· Cleavage: This typically occurs preferentially parallel to higher density planes.

· Plastic deformation: Dislocation glide occurs preferentially parallel to higher density planes. The perturbation carried by the dislocation (Burgers vector) is along a dense direction. The shift of one node in a more dense direction requires a lesser distortion of the crystal lattice.

In the rhombohedral, hexagonal, and tetragonal systems, the basal plane is the plane perpendicular to the principal axis.

Cubic structures

For the special case of simple cubic crystals, the lattice vectors are orthogonal and of equal length (usually denoted a); similarly for the reciprocal lattice. So, in this common case, the Miller indices (ℓmn) and [ℓmn] both simply denote normals/directions in Cartesian coordinates. For cubic crystals with lattice constant a, the spacing d between adjacent (ℓmn) lattice planes is (from above):

[image: image185.png]



Because of the symmetry of cubic crystals, it is possible to change the place and sign of the integers and have equivalent directions and planes:

· Coordinates in angle brackets such as <100> denote a family of directions that are equivalent due to symmetry operations, such as [100], [010], [001] or the negative of any of those directions.

· Coordinates in curly brackets or braces such as {100} denote a family of plane normals that are equivalent due to symmetry operations, much the way angle brackets denote a family of directions.

For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.

Classification

The defining property of a crystal is its inherent symmetry, by which we mean that under certain 'operations' the crystal remains unchanged. For example, rotating the crystal 180° about a certain axis may result in an atomic configuration that is identical to the original configuration. The crystal is then said to have a twofold rotational symmetry about this axis. In addition to rotational symmetries like this, a crystal may have symmetries in the form of mirror planes and translational symmetries, and also the so-called "compound symmetries," which are a combination of translation and rotation/mirror symmetries. A full classification of a crystal is achieved when all of these inherent symmetries of the crystal are identified.[1]
Grain boundaries

	
	This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (October 2009)


Grain boundaries are interfaces where crystals of different orientations meet. A grain boundary is a single-phase interface, with crystals on each side of the boundary being identical except in orientation. The term "crystallite boundary" is sometimes, though rarely, used. Grain boundary areas contain those atoms that have been perturbed from their original lattice sites, dislocations, and impurities that have migrated to the lower energy grain boundary.

Treating a grain boundary geometrically as an interface of a single crystal cut into two parts, one of which is rotated, we see that there are five variables required to define a grain boundary. The first two numbers come from the unit vector that specifies a rotation axis. The third number designates the angle of rotation of the grain. The final two numbers specify the plane of the grain boundary (or a unit vector that is normal to this plane).

Grain boundaries disrupt the motion of dislocations through a material, so reducing crystallite size is a common way to improve strength, as described by the Hall–Petch relationship. Since grain boundaries are defects in the crystal structure they tend to decrease the electrical and thermal conductivity of the material. The high interfacial energy and relatively weak bonding in most grain boundaries often makes them preferred sites for the onset of corrosion and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep.

Grain boundaries are in general only a few nanometers wide. In common materials, crystallites are large enough that grain boundaries account for a small fraction of the material. However, very small grain sizes are achievable. In nanocrystalline solids, grain boundaries become a significant volume fraction of the material, with profound effects on such properties as diffusion and plasticity. In the limit of small crystallites, as the volume fraction of grain boundaries approaches 100%, the material ceases to have any crystalline character, and thus becomes an amorphous solid.

Defects and impurities

Real crystals feature defects or irregularities in the ideal arrangements described above and it is these defects that critically determine many of the electrical and mechanical properties of real materials. When one atom substitutes for one of the principal atomic components within the crystal structure, alteration in the electrical and thermal properties of the material may ensue.[2] Impurities may also manifest as spin impurities in certain materials. Research on magnetic impurities demonstrates that substantial alteration of certain properties such as specific heat may be affected by small concentrations of an impurity, as for example impurities in semiconducting ferromagnetic alloys may lead to different properties as first predicted in the late 1960s.[3]

 HYPERLINK "http://en.wikipedia.org/wiki/Crystal_structure" \l "cite_note-3" [4] Dislocations in the crystal lattice allow shear at lower stress than that needed for a perfect crystal structure.[5]
Prediction of structure

Main article: Crystal structure prediction


Crystal structure of sodium chloride (table salt)

The difficulty of predicting stable crystal structures based on the knowledge of only the chemical composition has long been a stumbling block on the way to fully computational materials design. Now, with more powerful algorithms and high-performance computing, structures of medium complexity can be predicted using such approaches as evolutionary algorithms, random sampling, or metadynamics.

The crystal structures of simple ionic solids (e.g., NaCl or table salt) have long been rationalized in terms of Pauling's rules, first set out in 1929 by Linus Pauling, referred to by many since as the "father of the chemical bond".[6] Pauling also considered the nature of the interatomic forces in metals, and concluded that about half of the five d-orbitals in the transition metals are involved in bonding, with the remaining nonbonding d-orbitals being responsible for the magnetic properties. He, therefore, was able to correlate the number of d-orbitals in bond formation with the bond length as well as many of the physical properties of the substance. He subsequently introduced the metallic orbital, an extra orbital necessary to permit uninhibited resonance of valence bonds among various electronic structures.[7]
In the resonating valence bond theory, the factors that determine the choice of one from among alternative crystal structures of a metal or intermetallic compound revolve around the energy of resonance of bonds among interatomic positions. It is clear that some modes of resonance would make larger contributions (be more mechanically stable than others), and that in particular a simple ratio of number of bonds to number of positions would be exceptional. The resulting principle is that a special stability is associated with the simplest ratios or "bond numbers": 1/2, 1/3, 2/3, 1/4, 3/4, etc. The choice of structure and the value of the axial ratio (which determines the relative bond lengths) are thus a result of the effort of an atom to use its valency in the formation of stable bonds with simple fractional bond numbers.[8]

 HYPERLINK "http://en.wikipedia.org/wiki/Crystal_structure" \l "cite_note-8" [9]
After postulating a direct correlation between electron concentration and crystal structure in beta-phase alloys, Hume-Rothery analyzed the trends in melting points, compressibilities and bond lengths as a function of group number in the periodic table in order to establish a system of valencies of the transition elements in the metallic state. This treatment thus emphasized the increasing bond strength as a function of group number.[10] The operation of directional forces was emphasized in one article on the relation between bond hybrids and the metallic structures. The resulting correlation between electronic and crystalline structures is summarized by a single parameter, the weight of the d-electrons per hybridized metallic orbital. The “d-weight” calculates out to 0.5, 0.7 and 0.9 for the fcc, hcp and bcc structures respectively. The relationship between d-electrons and crystal structure thus becomes apparent.[11]
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•  APF for a simple cubic structure = 0.52



ATOMIC PACKING FACTOR

contains 8 x 1/8 = 
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Adapted from Fig. 3.19,

 Callister 6e. 
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•  ABCABC... Stacking Sequence

•  FCC Unit Cell



FCC STACKING SEQUENCE



•  2D Projection
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FCC STACKING SEQUENCE






•  Coordination # = 12



Adapted from Fig. 3.1(a),

 Callister 6e. 

(Courtesy P.M. Anderson)

•  Close packed directions are face diagonals.

--Note:  All atoms are identical; the face-centered atoms are shaded

   differently only for ease of viewing.

FACE CENTERED CUBIC STRUCTURE (FCC)
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•  APF for a body-centered cubic structure = p/(32) = 0.74

(best possible packing of identical spheres)



Adapted from

Fig. 3.1(a),

Callister 6e. 

ATOMIC PACKING FACTOR:  FCC
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•  APF for a body-centered cubic structure = p3/8 = 0.68





Adapted from

Fig. 3.2,

Callister 6e. 

ATOMIC PACKING FACTOR:  BCC
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HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)



Ideally, c/a = 1.633 for close packing

However, in most metals, c/a ratio deviates from this value
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Ficure 3.3 For the hexagonal close-packed crystal structure, (@) a reduced-
sphere unit cell (a and ¢ represent the short and long edge lengths, respectively),
and (b) an aggregate of many atoms. (Figure b from W. G. Moffatt, G. W. Pearsall,
and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, p. 51.
Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission of
John Wiley & Sons, Inc.)
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•  Coordination # = 12

•  ABAB... Stacking Sequence

•  APF = 0.74, for ideal c/a ratio of 1.633

•  3D Projection

•  2D Projection





Adapted from Fig. 3.3,

 Callister 6e. 

HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)
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•  Coordination # = 8



Adapted from Fig. 3.2,

 Callister 6e. 

(Courtesy P.M. Anderson)

•  Close packed directions are cube diagonals.

--Note:  All atoms are identical; the center atom is shaded

   differently only for ease of viewing.

BODY CENTERED CUBIC STRUCTURE (BCC)
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Close packed crystals
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[Face Centered Cubic (FCC)]
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[Hexagonal Close Packing (HCP)]







Close packed crystals.





THEORETICAL DENSITY, r

Density = mass/volume

mass = number of atoms per unit cell * mass of each atom

mass of each atom = atomic weight/avogadro’s number
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Example:  Copper

Data from Table inside front cover of Callister (see previous slide):

•  crystal structure = FCC:  4 atoms/unit cell

•  atomic weight = 63.55 g/mol (1 amu = 1 g/mol)

•  atomic radius R = 0.128 nm   (1 nm = 10   cm)

-7









THEORETICAL DENSITY, r
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CRYSTAL SYSTEMS

Based on shape of unit cell ignoring actual atomic locations

Unit cell = 3-dimensional unit that repeats in space

Unit cell geometry completely specified by a, b, c & a, b, g (lattice parameters or lattice constants)

Seven possible combinations of a, b, c & a, b, g, resulting in seven crystal systems
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Ficure 3.4 A unit cell with x, y, and z coordinate axes,
showing axial lengths (a, b, and ¢) and interaxial angles

(a, B, and ).
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•  Structure of NaCl 

STRUCTURE OF OTHER SYSTEMS

(Courtesy P.M. Anderson)

•  Structure of Carbon 
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Why?

  Metals have...

    • close-packing

        (metallic bonding)

    • large atomic mass

  Ceramics have...

    • less dense packing

        (covalent bonding)

    • often lighter elements

  Polymers have...

    • poor packing

         (often amorphous)

    • lighter elements (C,H,O)

  Composites have...

    • intermediate values

Data from Table B1, Callister 6e. 

DENSITIES OF MATERIAL CLASSES
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Adapted from

Table, "Charac-

teristics of

Selected

Elements",

inside front

cover,

Callister 6e. 

Characteristics of Selected Elements at 20C
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COMPARISON OF CRYSTAL STRUCTURES

Crystal structure	coordination #	packing factor	close packed directions



Simple Cubic (SC)		6		0.52		cube edges



Body Centered Cubic (BCC)	8		0.68		body diagonal



Face Centered Cubic (FCC)	12		0.74		face diagonal



Hexagonal Close Pack (HCP)	12		0.74		hexagonal side
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ISSUES TO ADDRESS...

•  How do atoms assemble into solid structures?

   

•  How does the density of a material depend on

   its structure?

•  When do material properties vary with the

   sample orientation?

TOPIC 3:  STRUCTURE OF SOLIDS

Based on Chapter 3 (Callister)
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ATOMIC PACKING FACTOR

Fill a box with hard spheres

Packing factor = total volume of spheres in box / volume of box

Question: what is the maximum packing factor you can expect?

In crystalline materials:

Atomic packing factor = total volume of atoms in unit cell / volume of unit cell

(as unit cell repeats in space)







+ Filla boxwith hard spheres

—Packing factor=otalvolume o spheresin
Do/ voums of box

—Quaston: whstis the meximum pscking factor
yousen expect?

+ Incrystalline materials:
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SOME DEFINITIONS …

Lattice: 3D array of regularly spaced points

Crystalline material: atoms situated in a repeating 3D periodic array over large atomic distances

Amorphous material: material with no such order

Hard sphere representation: atoms denoted by hard, touching spheres

Reduced sphere representation

Unit cell: basic building block unit (such as a flooring tile) that repeats in space to create the crystal structure; it is usually a parallelepiped or prizm
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(a)

Ficure 3.1  For the
face-centered cubic crystal
structure: (@) a hard
sphere unit cell
representation, (b) a
reduced-sphere unit cell,
and (c) an aggregate of
many atoms. (Figure ¢
adapted from W. G.
Moffatt, G. W. Pearsall,
and J. Wulff, The Structure
and Properties of
Materials, Vol. 1, Structure,
p- 51. Copyright © 1964 by
John Wiley & Sons, New
York. Reprinted by
permission of John

Wiley & Sons, Inc.)













•  Cubic unit cell is 3D repeat unit 

  Rare (only Po has this structure)

•  Close-packed directions (directions along which atoms touch each other) 

    are cube edges.

•  Coordination # = 6

   (# nearest neighbors)





(Courtesy P.M. Anderson)

SIMPLE CUBIC STRUCTURE (SC)
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‘SMPLE CUBIC STRUCTURE (S0)
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